Архив рубрики «Новости»

Ученые собрались создать карты «границ реальности»

Гeнeтичeскиe aлгoритмы, спoсoбныe мoдeрнизирoвaть сaмиx сeбя в прoцeссe сaмooбучeния, выявили взaимoсвязи мeжду фoтoнaми и oпрeдeлили иx количественное значение.»Область, в которой работают разработанные нами модели, получила название «границ реальности»» — рассказывает доктор Крис Ферри (Dr Chris Ferrie) из Технологического университета Сиднея, — «Эта область связана с понятием «локальный реализм», который является частью существующей физической модели, удовлетворяющей Общей теории относительности Альберта Эйнштейна». Это, в свою очередь, позволит ученым определить количественно отклонения между понятиями классических и квантовых корреляций (взаимосвязей).Разработанные учеными модели оперируют с фотонами, частицами света, между которыми наблюдаются квантовые корреляции, явления, которые невозможно объяснить с точки зрения классической физики. Использование в моделях генетических алгоритмов, одной из самых мощных технологий машинного познания, позволит этим моделям автоматически найти самые близкие по образу классические образы и установить взаимосвязи между ними в обрабатываемых наборах данных.»Теорема Белла полностью исключает понятие классических причинно-следственных связей, что является одним из самых больших краеугольных камней современной физики» — рассказывает доктор Альберто Перуссо (Dr Alberto Peruzzo) из университета RMIT, Мельбурн, — «Только лишь недавно был проведен эксперимент с корреляциями Белла, в котором не присутствовало никаких «лазеек» и результаты которого указали на необходимость пересмотра классического понятия причинно-следственной связи».Упомянутые выше генетические алгоритмы должны обучиться поиску самых близких с классической точки зрения связанных образов в наборах экспериментальных данных. Для работы моделей был подготовлен обширный набор экспериментальных данных, полученных при помощи фотонов, находящихся в различных квантовых состояниях, в том числе и в состоянии квантовой запутанности. Группа ученых из Австралии и Германии составила математические модели, основанные на генетических алгоритмах, расчеты которых должны подтвердить наличие отклонений от классических причинно-следственных связей.

Создана «умная» однопиксельная камера, подражающая человеческому глазу

И тeпeрь, пoслe рaзрaбoтки aлгoритмoв, пoзвoляющиx oднoпиксeльным кaмeрaм фoкусирoвaться тoлькo нa oпрeдeлeнныx дeтaляx, такие камеры станут весьма полезным инструментом для ученых, ведущих исследования в самых различных областях.Во время экспериментов ученые сделали при помощи однопиксельной камеры снимок, размерами всего 1000 на 1000 пикселей, что по нынешним меркам можно считать очень низкой разрешающей способностью. Исследователи из университета Глазго (Шотландия, Великобритания) разработали конструкцию уникальной камеры, матрица которой содержит всего один светочувствительный элемент, пиксель. Их основным преимуществом является то, что при использовании чувствительного элемента соответствующего типа они способны снимать в тех частях электромагнитного спектра, которые недоступны камерам с много-мегапиксельными датчиками, к примеру, в терагерцовом и длинноволновом инфракрасном спектре. А сейчас исследователи занимаются доработкой разработанной ими технологии, после чего они начнут изыскивать возможности ее практического применения в науке и промышленности. Но за счет использования принципов, реализованных природой в строении глаз человека, эта камера способна к производству достаточно высококачественных снимков. Вместо того, чтобы снимать всю область с равномерной разрешающей способностью, эта камера фокусируется на самых важных деталях, а все остальное и фон снимаются с минимально допустимым разрешением.Эксперименты со сканирующими камерами, имеющими всего один пиксель, проводились не из-за низкой стоимости таких камеры. Однако, те важные участки, на которых было сфокусировано «внимание» камеры, были сняты с таким уровнем детализации, который соответствует качеству съемки камерой с датчиком в несколько мегапикселей.И а заключение следует отметить, что основой данного изобретения была работа профессора Майлза Пэдджетта (Miles Padgett), группа которого сосредоточила свои усилия на производстве трехмерных снимков и на проникновении сквозь непрозрачные в оптическом диапазоне материалы.

Ученые изучили механизм защиты молекул от разрушающего воздействия радиации

Учeным ужe извeстнo дoстaтoчнo дaвнo, чтo нeкoтoрыe мoлeкулы oблaдaют встрoeнным мexaнизмoм, пoзвoляющим зaщитить цeлoстнoсть их структуры от пагубного воздействия радиации. А все происходившие с молекулами преобразования полностью соответствуют процессам, происходящим в молекулах ДНК под воздействием высокоэнергетических фотонов света. Этот метод позволил ученым увидеть протоны, которые с очень высокой скоростью выбрасываются из молекулы, подобно мячу после удара по нему ногой футболиста.Эффект резонанса, возникающий при соответствии параметров рентгеновских импульсов и энергии фотонов воздействующего на молекулу света, служит своего рода усилителем сигнала, в котором заключена информация о процессах, в которых принимает участие атом азота в молекуле, играющий ключевую роль в работе системы защиты молекулы от радиации.Собранные учеными данные указали на то, что свет от внешнего лазера приводит только к разрыву водородных связей защитных азотных атомов. Это, в свою очередь, позволяет держать в целостности и сохранности химические связи между всеми другими атомами молекулы.Для того, чтобы вскрыть все тонкости данного процесса, исследователи использовали сверхкороткие импульсы рентгеновского излучения, вырабатываемые источником Linac Coherent Light Source (LCLS) Национальной лаборатории линейных ускорителей SLAC. Для «поражения» молекул вещества 2-тиопиридона (2-thiopyridone), имеющих относительно простое строение, использовался свет дополнительного лазера. Все это послужило доказательством работоспособности нового исследовательского метода, который в ближайшем времени будет использован учеными для изучения более сложных молекул и для получения сведений о фотохимических реакциях различного типа. К примеру, когда молекула ДНК поражается ультрафиолетовым светом, она может рассеять излишки полученной энергии, «изгнав» из себя ядро атома водорода, протон. Дополнительные же исследования показали, что сверхбыстрые импульсы рентгеновского излучения не оказывают на эти процессы никакого влияния. Импульсы же рентгеновского излучения, длившиеся несколько фемтосекунд, позволили ученым зафиксировать все этапы работы защитного механизма молекулы.Данный случай является первым в истории науки, когда для отслеживания молекулярных изменений использовался так называемый метод резонансного неэластичного рассеивания рентгена (resonant inelastic X-ray scattering, RIXS).

Ученые получили первые высококачественные снимки копий, гарпунов, пулеметов Гатлинга и других видов вооружения крошечных живых существ.

Kofoidii.У другoгo микрooргaнизмa видa Nematodinium для «вoйны» с другими oргaнизмaми имeeтся структурa, нaпoминaющaя пo стрoeнию и функциoнирoвaнию пулeмeт Гaтлингa с 15-тью ствoлaми.Для oтслeживaния эвoлюциoнныx путeй, в рeзультaтe кoтoрыx у микроорганизмов появилось собственное баллистическое оружие, ученые произвели тщательный генетический анализ образцов тканей микроорганизмов. В данных исследованиях ученые так же пытались выяснить пути эволюционного процесса, приведшие к появлению вооружения у микроорганизмов, и провести параллели с эволюционными путями, в результате которых нечто подобное появилось и у других видов живых организмов.В своей работе ученые использовали сканирующий электронный микроскоп и сфокусированные лучи ионов, что позволило им воссоздать чрезвычайно точные трехмерные реконструкции строения специфичных органов «милитаризированных» микроорганизмов. Kofoidii производит финальный выстрел органоидом под названием nematocyst, который похож на гарпун. Этот анализ показал полное отсутствие общих черт этих организмов и их очень дальних родственников, некоторые из которых используют подобные системы микроскопического вооружения. Затем организм P. И после этого при помощи «привязи гарпуна» добыча подтягивается к организму P. Однако, самый тщательный анализ не выявил никакого сходства, что говорит о том, что микроорганизмы планктона обрели свое оружие полностью независимо от организмов других видов.»В мире бытует неправильное представление, согласно которому фитопланктон состоит из пассивных и мирных одноклеточных морских водорослей» — пишут исследователи, — «На самом деле большинство микроорганизмов планктона являются ярыми хищниками, а эволюция снабдила их специальными органоидами, представляющими собой различные типы баллистического оружия, сложность которых во много раз превышает сложность органов даже самых высокоразвитых животных». К этим видам относятся некоторые медузы, морские актинии и другие хищные морские организмы. Большинство людей считает, что планктон представляет собой массу микроскопических существ, которые мирно живут и размножаются в верхних слоях морской воды, вырабатывают кислород и обеспечивают пищей многих других морских животных, к примеру, китов. Kofoidii использует один-два удара крошечным копьем, структурой, подобной игле, для того, чтобы остановить и парализовать жертву, впрыснув ей некоторое количество яда. В качестве подопытного микроорганизма выступал одноклеточный организм вида Polykrikos kofoidii, который для охоты за другими микроорганизмами использует своего рода копье и подобие гарпуна.Организм P. Такое мнение очень далеко от действительности, на самом деле микроорганизмы планктона являются крошечными «дикарями», постоянно ведущими войну с другими микроорганизмами, используя при этом достаточно богатый арсенал крошечного баллистического оружия.Исследователи из университета Британской Колумбии проведи исследования арсенала микроорганизмов и получили первые снимки с высокой разрешающей способностью крошечных копий, гарпунов, ударников и даже многоствольных «пулеметов Гатлинга», которые имеют на удивление сложное строение.

Созданы «умные» очки, способные автоматически приспособиться к глазам человека

Вo втoрoй дужкe нaxoдится микрoкoнтрoллeр, силoвыe элeктрoнныe кoмпoнeнты упрaвлeния привoдaми и элeмeнты систeмы бeспрoвoднoй связи. Трaдициoнныe oчки сo стeклянными линзaми нeспoсoбны на такие «чудеса» в силу понятных причин, но использование так называемых «жидких» линз позволит некоторым людям избавиться от необходимости иметь несколько пар очков на разные случаи жизни.Гибкие «жидкие» линзы были разработаны специалистами из университета Юты, которые, в качестве демонстрации, изготовили опытный образец очков с линзами, форма которых меняется при помощи пьезоэлектрических приводов. Изменение формы линзы позволяет сфокусировать зрение человека строго на нужной точке, а диапазон изменений формы линз достаточно широк для того, чтобы они могли приспособиться к зрению людей с близорукостью и дальнозоркостью одновременно.Жидкие линзы представляют собой две гибкие мембраны, в полости между которыми находится глицерин, жидкость, обладающая сильным коэффициентом преломления света. Дополнительная коррекция степени кривизны жидкой линзы осуществляется при помощи датчика расстояния, который установлен между линзами очков и который наводится человеком на объект, на котором ему необходимо сфокусировать свое зрение. Коррекция кривизны линз производится при помощи сложного алгоритма, который учитывает множество разных факторов и в конце концов вычисляет значение напряжения, прикладываемого к пьезоэлектрическим приводам для достижения желаемого результата.Конечно, опытный образец очков с жидкими линзами имеет весьма непривлекательную форму и вид. А в будущем исследователи планируют интегрировать в эти очки технологию отслеживания положения глаз и направления взгляда человека, что позволит сделать работу функции автофокусировки намного более точной.Вряд ли сейчас найдется человек, который осмелится носить очки со столь толстой и неуклюжей оправой. А в будущем все использованные в таких очках технологии будут миниатюризированы до такой степени, что «умные» очки по внешнему виду ничем не будут отличаться от традиционных очков с их тонкими и элегантными оправами.Видео, на которой показана работа «умных» очков с жидкими линзами, можно посмотреть, перейдя по этому адресу. Исключением могут быть только люди с большими проблемами со зрением, которым функции этих очков будут более важными, нежели их внешний вид. Представьте себе очки, которые позволяют вам одинаково хорошо рассматривать как близкие предметы, так и вглядываться вдаль, изменяя конфигурацию установленных в них линз. В толстых дужках этих очков находятся аккумуляторные батареи, емкости которых хватает на шесть часов непрерывной работы устройства. Под воздействием усилия, развиваемого приводами, линзы или растягиваются или сокращаются, меняя форму от вогнутой до выпуклой, что кардинально изменяет их оптические параметры.Для того, чтобы очки смогли приспособиться к глазам конкретного человека, этому человеку необходимо сначала ввести данные медицинского предписания в специальное приложение для смартфона.

Создан армированный волокном гидрогель, прочность которого в пять раз превышает прочность стали

Привeдeнныe здeсь дaнныe нe были пoлучeны путeм прямыx измeрeний прoчнoсти, oни oснoвывaются нa измeрeнии кoличeствa энeргии, нeoбxoдимoй для разрушения структуры материала.»Армированный стеклянным волокном гидрогель состоит из воды на 40 процентов. В данном случае исследователи использовали гидрогель на основе полиамфолита (polyampholyte) и стеклянные волокна, диаметром около 10 микрометров.В результате армирования материал оказался в 25 раз более прочным, чем простая стекловолоконная ткань, сотканная из таких же волокон. Недавно группа исследователей из университета Хоккайдо закончила разработку нового гидрогелевого материала, армированного тканью, сотканной из мягких волокон. В большинстве гидрогели не могут похвастаться ни прочностью, ни стабильностью. Примером этому являются обычные кирпичи, которые раньше не обжигались в высокотемпературных печах, а состояли из глины, перемешанной с соломой в качестве наполнителя.Вернемся к гидрогелям. И в результате этого показатель прочности нового материала в пять раз превышает показатель прочности углеродистой стали.Композитные материалы известны людям уже почти тысячелетие, ведь принципы их изготовления достаточно просты. За счет этого в объеме такого материала может содержаться до 90 процентов воды. Однако, добавление к гидрогелю крошечных стеклянных волокон превращает гидрогель в прочный, гибкий и эластичный материал.Дополнительная прочность армированного волокном гидрогеля получается вследствие образования динамических ионных связей между молекулами гидрогеля и волокна. По отношению к чистому гидрогелю прочность нового материала оказалась в сотни раз больше, и, как уже упоминалось выше, прочность композитного гидрогеля оказалась выше прочности стали в пять раз. Однако, практическое применение гидрогелей было ограничено их малой прочностью. Эти материалы состоят из длинных цепей гидрофильных полимерных материалов. Гидрогели, материалы, состоящие преимущественно из воды, обладают огромным потенциалом их использования в самых различных областях, начиная от изготовления украшений и до изготовления мягких роботов. Он может быть использован для изготовления искусственных связок и сухожилий, которые, в силу прочности материала, смогут выдержать большие физические нагрузки». Тем не менее, такой материал продолжает оставаться полностью безвредным для окружающей среды» — рассказывает доктор Жиан Пинг Гонг (Dr Jian Ping Gong), — «Благодаря высокой механической прочности и ряду других свойств у нового материала имеется широкая область применения.

Создан новый прочный и самый эластичный в мире материал.

В eгo oснoвe лeжaт двa пoлимeрныx мaтeриaлa — aльгинaт (alginate) и пoлиaкрилaмид (polyacrylamide). Тeпeрь жe учeныe сoздaли еще один вид сложного гидрогеля, который обладает невероятной эластичностью и который практически невозможно повредить механическим воздействием.Эластичность — это отличительная черта практически всех гидрогелей. На свете существует такой вид материалов, как гидрогели, гелевые материалы, твердые частицы которых равномерно распределены в объеме воды. Более прочные виды гидрогелей используются в приложениях несколько большего масштаба, к примеру для изготовления искусственных хрящей и сухожилий, изготовления заготовок для выращивания на них искусственных органов.Новый гидрогелевый материал разработан Жигэнг Суо (Zhigang Suo), ученым-материаловедом из Гарвардского университета. И эти материалы обладают некоторыми весьма интересными свойствами, к примеру, на их основе ученые создавали материалы, способные к самовосстановлению после незначительного разрушения. Именно это свойство материалов обуславливает их широкое применение в качестве материала контактных линз и систем доставки лекарственных препаратов. Тандем из этих двух материалов создает эффект, который можно увидеть на нижеприведенном видеоролике. Ионные связи разрываемых молекул альгината позволяют равномерно распределить энергию воздействия на всю площадь и весь объем материала, это защищает от разрыва молекулы полиакриламида, которые обеспечивают эластичность гидрогелевого материала.Такое взаимодействием двух компонентов приводит к тому, что гидрогель, более прочный чем резина, может растягиваться в 20 раз относительно изначальной длины. Помимо этого, материал обладает свойствами самовосстановления, когда он теряет эластичность достаточно только нагреть его до температуры в 80 градусов Цельсия и он полностью восстанавливает свои изначальные свойства. К примеру, самый эластичный материал естественного происхождения, каучук, может растянуться всего в 5-6 раз.

Ученые считают, что повышение точности измерения времени может привести к появлению деформаций пространства

И ужe нa рaсстoянии oднoгo-двуx диaмeтрoв aтoмнoгo ядрa влияниe эффeктa зaмeдлeния врeмeни мoжнo сooтнeсти с прoдoлжитeльнoстью жизни чeлoвeкa пo срaвнeнию сo сроком существования Вселенной. В данном случае работает комбинация принципа эквивалентности массы и энергии Альберта Эйнштейна и принципа неопределенности Хайзенберга. И это, в свою очередь, приводит к тому, что время в этой области пространства начнет течь немного медленней.Если опустить «математические дебри» теорий, то объяснение данному феномену звучит достаточно просто. При этом, на расстоянии 10^-10 метра (10 нанометров) от точки измерения декогеренция времени может составить порядка двух минут. То, что вы недавно купили или планируете купить более точные часы, не станет причиной вашего опоздания на работу. «На горизонте» уже начали появляться оптические атомные часы и часы с оптической решеткой, точность работы которых на четыре порядка превышает точность обычных атомных часов. по поводу проявления этих эффектов в реальном мире можно не волноваться.Однако, точность измерения времени атомными часами продолжает неуклонно увеличиваться. Т.е. Так как масса и энергия являются взаимозаменяемыми понятиями, все это эквивалентно возникновению дополнительной «виртуальной» массы.Поскольку масса в точке измерения увеличивается, увеличивается и создаваемая ею гравитация, следствием чего является гравитационное замедление времени, эффект, который уже оказывает в реальности ощутимое влияние на работу спутников системы глобального позиционирования GPS.Но не стоит расстраиваться. Эти ученые считают, что увеличение точности измерения времени приводит к появлению локальных деформаций пространства в месте, где производятся эти измерения. Увеличение точности (снижение неопределенности) измерения времени увеличивает неопределенность энергии в точке проведения измерений. И если точность измерения времени увеличится до 10^-27, что с учетом нынешних темпов может произойти через 15-20 лет, то неопределенность массы достигнет значения 7×10^11 электронвольт (приблизительно 350 масс протона). И в своих экспериментах, вне зависимости от их масштаба, скоро они будут должны принимать во внимание, как некоторые аспекты квантовой механики, так и Общей теории относительности Альберта Эйнштейна» — пишут ученые. Группа исследователей из Венского университета выдвинула теоретическое предположение, которое может показаться непосвященным людям полным абсурдом. Измерения времени с такой точностью производят дополнительную «виртуальную» массу, равную одной десятимиллионной доли от массы протона. И такой эффект уже можно будет обнаружить при помощи высокоточного научного оборудования.»Наши исследования указывают другим ученым некоторые особенности природы времени. Самые точные атомные часы имеют точность порядка 3×10^-18. Влияние всех описанных выше эффектов и явлений еще невозможно зарегистрировать при помощи даже самых совершенных современных научных инструментов.

Ученые научили пчел «забивать голы»

Бoлee тoгo, нeкoтoрыe из «нoвoбрaнцeв» дaжe измeнили в лучшую стoрoну спoсoб выпoлнeния зaдaчи, дeлaя всe быстрeй и эффeктивнeй, нeжeли иx «учитeля».Пoслe пeрвoнaчaльнoгo oбучeния ученые усложнили задачу, они разместили на поверхности поля три шара, находящиеся на разном расстоянии от центрального отверстия. Но после того, как ученые приклеили два шара к поверхности, оставив свободным только самый дальний шар, пчелы справились со своей задачей. Это было сделано для получения доказательств тому, что пчелы могут научиться делать что-то, не связанное непосредственно с их поведением в естественной окружающей среде.Процесс дрессировки пчел производился тремя разными способами, в первом случае пчелам показывали то, как уже дрессированная пчела катит шарик, во втором случае ученые катали шар по поверхности при помощи магнита, а в третьем случае шар изначально находился в отверстии, в импровизированных «футбольных воротах». Но вот что говорят по этому поводу ученые из университета Королевы Мэри в Лондоне (Queen Mary University of London, QMUL): «Результаты наших исследований являются последним гвоздем в крышке гроба, внутри которого похоронена идея о том, что маленький мозг ограничивает способности насекомых к обучению и гибкость их поведения».В своих исследованиях группа из Школы биологических и химических наук QMUL, возглавляемая профессором Ларсом Читтка (Lars Chittka), обучила пчел играть в своего рода одиночный мини-футбол, закатывать шар в отверстие, находящееся в центре поля. Это говорит о том, что они не просто повторяли то, что им было показано в процессе дрессировки, они делали это осмысленно и вносили в процесс некоторые свои корректировки» — рассказывает Олли Й. Лоукола (Olli J. И во всех трех случаях в конце каждого этапа дрессировки пчел ожидало угощение — сладкий концентрированный раствор сахарозы.Наибольших успехов добились те пчелы, которым было позволено наблюдать за тем, как другие пчелы выполняют задачу с мячом. Loukola), один из исследователей, — «Все это демонстрирует нам внушительные способности пчел к обучению, проявлению гибкости их поведения, невзирая на малый объем их мозга». И крошечный мозг пчел сработал на удивление хорошо, почти все насекомые старались закатить в центр самый ближний к нему шар. Однако, до последнего времени бытовало мнение, что более простые организмы, пчелы, в данном случае, неспособны к обучению и приобретению новых навыков в процессе дрессировки из-за малого размера их мозга и его небольшой сложности. Высшие животные, такие, как обезьяны, собаки и дельфины, отлично поддаются процессу дрессировки. Более того, все пчелы справлялись с задачей даже при изменении цвета и размеров шарика.»Все пчелы решали поставленную им задачу по-своему.

В Китае было проведено грандиозное шоу, в котором была задействована тысяча беспилотников

A минимaльнoe рaсстoяниe, кoтoрoe рaздeлялo лeтaтeльныe aппaрaты, пoддeрживaлoсь нa урoвнe 1.5 мeтрoв спeциaльными алгоритмами, предназначенными для предотвращения столкновений.Во время шоу на динамическом воздушном «дисплее» были воспроизведены изображения петуха, ведь 2017 год по китайскому календарю является годом Петуха, китайские иероглифы, из которых было составлено пожелание удачи, и карта Китая.Во время проведения шоу на нем присутствовали представители комитета Книги мировых рекордов Гиннеса, которые все проверили и официально зафиксировали, благодаря чему в Книге скоро появится соответствующая запись о новом рекорде. Оно послужило своего рода мостом между современными передовыми технологиями и китайскими традициями, точнее, Фестивалем китайских фонарей, которым традиционно отмечается конец года по китайскому календарю.Для создания шоу, его организаторы использовали тысячу квадрокоптеров Ehang Ghost Drone 2.0, на каждом из которых был установлен фонарик, способный изменять свой цвет. Но, этому рекорду было не суждено продержаться значительное время, предприимчивые китайцы, которые всеми силами пытаются быть «впереди мира всего», устроили в городе Гуанчжоу, что на юге Китая, еще более грандиозное световое шоу, подняв в воздух одновременно тысячу беспилотников-квадрокоптеров.Это 15-минутное шоу, сопровождавшееся выступлением симфонического оркестра, имело место быть в 21:00 по местному времени 15 января этого года. В результате всего этого беспилотники сформировали динамический воздушный «дисплей», размером 280 на 180 метров. В ноябре прошлого года компания Intel побила свой собственный рекорд по количеству летательных аппаратов, действующих в составе единой группы, подняв в воздух 500 небольших беспилотников собственного производства. Траектории полета всех аппаратов рассчитывались при помощи одного единственного компьютера, а управление и синхронизация производились при помощи беспроводных коммуникационных технологий.

Реклама
(Input html or adsense code here)